Saikosaponin A inhibits IL-1β-induced inflammatory mediators in human osteoarthritis chondrocytes by activating LXRα
نویسندگان
چکیده
Saikosaponin a (SSa), one of the main active components of Bupleurum falcatum, has been reported to have anti-inflammatory effect. In the present study, we investigated the anti-inflammatory effect of SSa on IL-1β-stimulated human osteoarthritis chondrocytes. The cells were pretreated with SSa 12 h before IL-1β treatment. The production of PGE2 and NO were detected by ELISA and Griess method. The levels of MMP1, MMP3, and MMP13 were measured by ELISA and qRT-PCR. The expression of NF-κB and LXRα were tested by western blot analysis. The results showed that SSa inhibited IL-1β-induced PGE2 and NO production in a concentration-dependent manner. SSa also suppressed IL-1β-induced MMP1, MMP3, and MMP13 production. Furthermore, SSa significantly attenuated IL-1β-induced phosphorylation levels of NF-κB p65 and IκBα. SSa also up-regulated the expression of LXRα. The inhibition of SSa on PGE2, NO, MMP1, MMP3, and MMP13 production were reversed by LXRα siRNA or GGPP, the inhibitor of LXRα. In conclusion, our results demonstrated that SSa inhibited inflammatory responses in human chondrocytes in vitro. SSa might be a potential therapeutic drug for osteoarthritis.
منابع مشابه
Saikosaponin a inhibits LPS-induced inflammatory response by inducing liver X receptor alpha activation in primary mouse macrophages
The aim of this study was to investigate the effects of SSa on LPS-induced endotoxemia in mice and clarify the possible mechanism. An LPS-induced endotoxemia mouse model was used to confirm the anti-inflammatory activity of SSa in vivo. The primary mouse macrophages were used to investigate the molecular mechanism and targets of SSa in vitro. In vivo, the results showed that SSa improved surviv...
متن کاملSesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway
Sesamin, a bioactive component extracted from sesame, has been reported to exert anti-inflammatory and anti-oxidant effects. In this study, we evaluated the anti-inflammatory effects of sesamin on IL-1β-stimulated human osteoarthritis chondrocytes and investigated the possible mechanism. Results demonstrated that sesamin treatment significantly inhibited PGE2 and NO production induced by IL-1β....
متن کاملGypenoside inhibits interleukin-1β-induced inflammatory response in human osteoarthritis chondrocytes.
Gypenoside (GP), the main active ingredient of Gynostemma pentaphyllum, possesses a variety of pharmacological capacities including anti-inflammation, anti-oxidation, and anti-tumor. However, the effects of GP on IL-1β-stimulated human osteoarthritis (OA) chondrocytes are still unknown. Therefore, this study aimed to investigate the anti-inflammatory effects of GP on IL-1β-stimulated human OA c...
متن کاملMelatonin inhibits Sirt1-dependent NAMPT and NFAT5 signaling in chondrocytes to attenuate osteoarthritis
Osteoarthritis (OA) is a degenerative joint disease mainly characterized by cartilage degradation. Interleukin-1β (IL-1β) contributes to OA pathogenesis by enhancing oxidative stress and inflammation. Melatonin reportedly elicits potent protection against OA. However, the role of melatonin and underlying mechanism in IL-1β-stimulated chondrocytes remain largely unclear. In this study, we found ...
متن کاملPomegranate extract inhibits the interleukin-1β-induced activation of MKK-3, p38α-MAPK and transcription factor RUNX-2 in human osteoarthritis chondrocytes
INTRODUCTION Pomegranate has been revered throughout history for its medicinal properties. p38-MAPK is a major signal-transducing pathway in osteoarthritis (OA) and its activation by interleukin-1β (IL-1β) plays a critical role in the expression and production of several mediators of cartilage catabolism in OA. In this study we determined the effect of a standardized pomegranate extract (PE) on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017